BMV-CSC Patch: Sel Punca Jantung dengan Biomimetic Microvessel berbasis HUVEC sebagai Inovasi Potensial untuk Terapi Infark Miokardium Akut

Main Article Content

Yitzchak Millenard Sigilipu

Abstract

Coronary Heart Disease (CHD) is the main global cause of morbidity and mortality. The most common form of CHD is myocardial infarction which contributes to more than 15% of death. Cardiac stem cell-based therapy (CSC) is a promising approach to treat the condition. The main issue hindering efficacy and further development of the approach is the low retention and viability of stem cells after intra myocardial injection on ischemic heart. In order to address the issue, a novel strategy to create a vascularized cardiac patch using the microfluid with hydrodynamic focusing technique. The cardiac patch will be integrated Biomimetic Micro Vessels (BMV) alongside human umbilical vein endothelial cells (HUVEC) on the luminal surface. A study reported that the endothelium of BMV mimics the architecture and natural functioning of the capillaries. Vascularized cardiac patch (BMV-CSC) will release paracrine factors higher than original co-cultured human CSC and HUVEC after seven days of in vitro culture. In acute myocardial infract (AMI) rat model, the BMV-CSC patch induced mitotic activities of cardiomyocytes in peri-infarcted area after 4 weeks of implantation. Significant increase in the density of myocardial capillaries in infarct area compared to the conventional cardiac patch was also reported. The significant benefits of BMV-CSC patch showed that this approach is a potential method for AMI therapy.

Article Details

How to Cite
Sigilipu, Y. (2021). BMV-CSC Patch: Sel Punca Jantung dengan Biomimetic Microvessel berbasis HUVEC sebagai Inovasi Potensial untuk Terapi Infark Miokardium Akut. JIMKI: Jurnal Ilmiah Mahasiswa Kedokteran Indonesia, 8(3), 98-110. https://doi.org/10.53366/jimki.v8i3.269
Section
Article Review

References

1. World Health Organization (WHO). Life Expectancy [Internet]. [cited 2019 Oct 9]. Available from: http://www.who.int/gho/mortality_burden_disease/life_tables/en/
2. Mendis S, Armstrong T, Bettcher D, Branca F, Lauer J, Mace C, et al. Global Status Report on Noncommunicable Diseases 2014. World Health Organisation. World Health Organization. 2014.
3. Kementerian Kesehatan Republik Indonesia. Penyakit Jantung Penyebab Kematian Tertinggi [Internet]. 2019 [cited 2019 Oct 10]. Available from: http://www.depkes.go.id/article/view/17073100005/penyakit-jantung-penyebab-kematian-tertinggi-kemenkes-ingatkan-cerdik-.html
4. Kumar V, Abbas A, Aster J. Robbins Basic Pathology. 9th ed. Elsevier Saunders. Elsevier; 2013. 377 p.
5. Nascimento BR, Brant LCC, Marino BCA, Passaglia LG, Ribeiro ALP. Implementing myocardial infarction systems of care in low/middle-income countries. Heart. 2019;105(1):20–6.
6. Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O’Neill WW. Multiple Complex Coronary Plaques in Patients with Acute Myocardial Infarction. N Engl J Med. 2000;343(13):915–22.
7. Haig C, Carrick D, Carberry J, Mangion K, Maznyczka A, Wetherall K, et al. Current Smoking and Prognosis After Acute ST-Segment Elevation Myocardial Infarction: New Pathophysiological Insights. JACC Cardiovasc Imaging. 2019;12(6):993–1003.
8. Massberg S, Polzin A. Update ESC-Guideline 2017: Dual Antiplatelet Therapy. Dtsch Medizinische Wochenschrift. 2018;143(15):1090–3.
9. Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction. Circ Res. 2016;119:91–112.
10. Sun X, Altalhi W, Nunes SS. Vascularization strategies of engineered tissues and their application in cardiac regeneration. Adv Drug Deliv Rev [Internet]. 2016;96:183–94. Available from: http://dx.doi.org/10.1016/j.addr.2015.06.001
11. Yellon DM, Hausenloy DJ. Myocardial Reperfusion Injury. N Engl J Med. 2007;357:1121–35.
12. Hausenloy DJ, Yellon DM. Targeting Myocardial Reperfusion Injury - The Search Continues. N Engl J Med. 2015;373:1073–5.
13. Pinto DS, Frederick PD, Chakrabarti AK, Kirtane AJ, Ullman E, Dejam A, et al. Benefit of Transferring ST-Segment-Elevation Myocardial Infarction patients for Percutaneous Coronary Intervention Compared with Administration of Onsite Fibrinolytic Declines as Delays Increase. Circulation. 2011;124:2512–21.
14. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, et al. Cardiovascular Remodelling in Coronary Artery Disease and Heart failure. Lancet. 2014;383:1933–43.
15. Bolli R, Ghafghazi S. Stem Cells: Cell therapy for cardiac repair: what is needed to move forward? Nat Rev Cardiol [Internet]. 2017;14(5):257–8. Available from: http://dx.doi.org/10.1038/nrcardio.2017.38
16. Annabi N, Tsang K, Mithieux SM, Nikkhah M, Ameri A, Khademhosseini A, et al. Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue. Adv Funct Mater. 2013;23:4950–9.
17. Tang J, Vandergriff A, Wang Z, Hensley MT, Cores J, Allen TA, et al. A Regenerative Cardiac Patch Formed by Spray Painting of Biomaterials onto the Heart. Tissue Eng - Part C Methods. 2017;23(3):146–55.
18. Riemenschneider SB, Mattia DJ, Wendel JS, Schaefer JA, Ye L, Guzman PA, et al. Inosculation and Perfusion of Pre-vascularized Tissue Patches Containing Aligned Human Microvessels After Myocardial Infarction. Biomaterials [Internet]. 2016;97:51–61. Available from: http://dx.doi.org/10.1016/j.biomaterials.2016.04.031
19. Su T, Huang K, Daniele MA, Hensley MT, Young AT, Tang J, et al. Cardiac Stem Cell Patch Integrated with Microengineered Blood Vessels Promotes Cardiomyocyte Proliferation and Neovascularization after Acute Myocardial Infarction. ACS Appl Mater Interfaces. 2018;10(39):33088–96.
20. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al. Evidence that Human Cardiac Myocytes Divide After Myocardial Infarction. N Engl J Med. 2001;379(19):1870.
21. Barile L, Messina E, Giacomello A, Marbán E. Endogenous Cardiac Stem Cells. Prog Cardiovasc Dis. 2007;50(1):31–48.
22. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult Cardiac Stem Cells are Multipotent and Support Myocardial Regeneration. Cell. 2003;114(6):763–76.
23. Tang YL, Shen L, Qian K, Phillips MI. A novel two-step procedure to expand cardiac Sca-1+ cells clonally. Biochem Biophys Res Commun. 2007;359(4):877–83.
24. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, et al. Postnatal isl1+ Cardioblasts Enter Fully Differentiated Cardiomyocyte Lineages. Nature. 2005;433(7026):647–53.
25. Oh H, Chi X, Bradfute SB, Mishina Y, Pocius J, Michael LH, et al. Cardiac Muscle Plasticity in Adult and Embryo by Heart-Derived Progenitor Cells. In: Annals of the New York Academy of Sciences. 2004. p. 182–9.
26. Smits AM, van Vliet P, Metz CH, Korfage T, Sluijter JPG, Doevendans PA, et al. Human Cardiomyocyte Progenitor Cells Differentiate into Functional Mature Cardiomyocytes: An In Vitro Model for Studying Human Cardiac Physiology and Pathophysiology. Nat Protoc. 2009;4(2):232–43.
27. Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, et al. Persistent Expression of the ATP-Binding Cassette Transporter, Abcg2, Identifies Cardiac SP Cells in the Developing and Adult Heart. Dev Biol. 2004;265(1):262–75.
28. Riegler J, Tiburcy M, Ebert A, Tzatzalos E, Raaz U, Abilez OJ, et al. Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction Model. Circ Res. 2015;117(8):720–30.
29. Li TS, Cheng K, Malliaras K, Smith RR, Zhang Y, Sun B, et al. Direct Comparison of Different Stem Cell Types and Subpopulations Reveals Superior Paracrine Potency and Myocardial Repair Efficacy with Cardiosphere-Derived Cells. J Am Coll Cardiol. 2012;59(10):942–53.
30. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, et al. Regenerative Potential of Cardiosphere-Derived Cells Expanded from Percutaneous Endomyocardial Biopsy Specimens. Circulation. 2007;115(7):896–908.
31. Sun Y, Chi D, Tan M, Kang K, Zhang M, Jin X, et al. Cadaveric Cardiosphere-Derived Cells Can Maintain Regenerative Capacity and Improve the Heart Function of Cardiomyopathy. Cell Cycle. 2016;15(9):1248–56.
32. Ashur C, Frishman WH. Cardiosphere-Derived Cells and Ischemic Heart Failure. Cardiol Rev. 2018;26(1):8–21.
33. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and Functional Human Liver from an iPSC-Derived Organ Bud Transplant. Nature. 2013;499(7459):481–4.
34. Laschke MW, Menger MD. Adipose Tissue-Derived Microvascular Fragments: Natural Vascularization Units for Regenerative Medicine. Trends Biotechnol. 2015;33(8):442–8.
35. Su T, Huang K, Daniele MA. Cardiac Stem Cell Patch Integrated with Microengineered Blood Vessels Promotes Cardiomyocyte Proliferation and Neovascularization after Acute Myocardial Infarction. ACS Appl Mater Interfaces. 2018;10(39):33088–96.
36. Tang J, Cui X, Caranasos TG, Hensley MT, Vandergriff AC, Hartanto Y, et al. Heart Repair Using Nanogel-Encapsulated Human Cardiac Stem Cells in Mice and Pigs with Myocardial Infarction. ACS Nano. 2017;11(10):9738–49.
37. Qian L, Shim W, Gu Y, Shirhan M, Lim KP, Tan LP, et al. Hemodynamic contribution of stem cell scaffolding in acute injured myocardium. Tissue Eng - Part A. 2012;18(15–16):1652–63.
38. Tang J, Shen D, Caranasos TG, Wang Z, Vandergriff AC, Allen TA, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;
39. Jeon O, Soo HR, Ji HC, Kim BS. Control of Basic Fibroblast Growth Factor Release from Fibrin Gel with Heparin and Concentrations of Fibrinogen and Thrombin. J Control Release. 2005;105(3):249–59.
40. Gomez-Gaviro MV, Lovell-Badge R, Fernandez-Aviles F. The Vascular Stem Cell Niche. 2012;5(5):618–30.
41. Wang D, Li L, Dai T, Wang A. Adult Stem Cells in Vascular Remodeling. Theranostics. 2018;8(3):815–29.
42. DiVito KA, Daniele MA, Roberts SA. Microfabricated Blood Vessels Undergo Neoangiogenesis. Biomaterials. 2017;138:142–52.
43. Daniele MA, Adams AA, Naciri J. Interpenetrating Networks Based on Gelatin Methacrylamide and PEG Formed using Concurrent Thiol Click Chemistries for Hydrogel Tissue Engineering Scaffolds. Biomaterials. 2014;35(6):1845–56.