The Potency of CtpF in Mycobacterium tuberculosis in The Development of CtpF-Inhibitors as Innovative Target Therapy in MDR/DR TB Treatment
Main Article Content
Abstract
Background: Tuberculosis (TB) is one of the major causes of death in the world with the number of cases reaching millions every year. TB is caused by Mycobacterium tuberculosis. The occurrence of mutations in M. tuberculosis that cause resistance to anti-tuberculosis drugs has become a health crisis in TB treatment. Drug resistance in TB consists of MDR TB and XDR TB. The incidence of MDR/XDR TB has increased rapidly in the world with total MDR TB cases reaching more than 480 thousand each year and 9% of those develop into XDR TB. Therefore, it is requisite to develop new therapeutic targets to reduce the prevalence of MDR/XDR TB. CtpF in M. Tuberculosis is the latest innovative therapeutic target in making a new anti-tuberculosis drug because it plays important role in M. tuberculosis homeostasis.
Method: This study was made using a non-systematic review method with four sources of publication and several keywords. Overall, 88 pieces of literature that meet the inclusion criteria were used.
Results and Discussion: CtpF is a type of P-type ATPase that transports Ca2+ ions and plays important role in responding to intraphagosomal stress conditions that are important for bacterial survival. Inhibition of CtpF can pull down Ca2+ homeostasis in M. tuberculosis so that it is unable to carry out various biomolecular processes and lose defense mechanisms against stress conditions. In addition, CtpF also has a very low mutation ability. This makes CtpF a druggable target for designing new anti-tuberculosis therapy that is not susceptible to resistance.
Conclusion: CtpF-inhibitor candidates have the potential to be developed as the latest target therapy in the treatment of MDR / XDR TB.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
2. Indonesia kementrian kesehatan republik. Pusat data dan informasi kementrian kesehatan Republik Indonesia. Tuberculosis. 2018.
3. Nurjana MA. Faktor Risiko Terjadinya Tubercolosis Paru Usia Produktif (15-49 Tahun) di Indonesia. Media Penelit dan Pengemb Kesehat. 2015;
4. Collins D, Hafidz F, Mustikawati D. The economic burden of tuberculosis in Indonesia. Int J Tuberc Lung Dis. 2017;
5. Lange C, Kalsdorf B, Maurer FP, Heyckendorf J. Tuberculosis. Internist. 2019;
6. Duarte R, Lönnroth K, Carvalho C, Lima F, Carvalho ACC, Muñoz-Torrico M, et al.Tuberculosis, social determinants and co- morbidities (including HIV). Pulmonology. 2018.
7. Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nature Reviews Drug Discovery. 2013.
8. Kementerian Kesehatan RI. Peraturan Menteri Kesehatan Republik Indonesia No. 67 Tahun 2016 Tentang Penanggulangan Tuberkulosis. Kementeri Kesehat Republik Indones. 2016;
9. Kemenkes RI. Tuberkulosis ( TB ). Tuberkulosis. 2018.
10. Robert Horsburgh C, Barry CE, Lange C. Treatment of tuberculosis. New England Journal of Medicine. 2015.
11. Zulkifli Amin AB. Tuberkulosis Paru. Buku Ajar Ilmu Penyakit Dalam. 2014;
12. Liang L, Ma Y, Liu X, Lv Y. Drug-resistant tuberculosis. In: Drug Resistance in Bacteria, Fungi, Malaria, and Cancer. 2017.
13. WHO. The Shorter MDR-TB Regimen. Who. 2016;
14. S. A, C. P. Old and New TB Drugs: Mechanisms of Action and Resistance. In: Understanding Tuberculosis - New Approaches to Fighting Against Drug Resistance. 2012.
15. Lange C, Abubakar I, Alffenaar JWC, Bothamley G, Caminero JA, Carvalho ACC, et al. Management of patients with multidrugresistant/ extensively drug-resistant tuberculosis in Europe: A TBNET consensus statement. Eur Respir J. 2014;
16. Klopper M, Warren RM, Hayes C, van Pittius NCG, Streicher EM, Müller B, et al. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg Infect Dis. 2013;
17. Prasad R. Multidrug and extensively drug-resistant TB (M/XDR-Tb): Problems and solutions. Indian J Tuberc. 2011;
18. Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis: Update 2015. International Journal of Tuberculosis and Lung Disease. 2015.
19. Dyla M, Terry DS, Kjaergaard M, Sørensen TLM, Andersen JL, Andersen JP, et al. Dynamics of P- type ATPase transport revealed by single-molecule FRET. Nature. 2017;
20. Veshaguri S, Christensen SM, Kemmer GC, Ghale G, Møller MP, Lohr C, et al. Direct observation of proton pumping by a eukaryotic P-type ATPase. Science (80-90). 2016;
21. Raimunda D, Long JE, Padilla-Benavides T, Sassetti CM, Argüello JM. Differential roles for the Co2+/Ni2+ transporting ATPases, CtpD and CtpJ, in Mycobacterium tuberculosis virulence. Mol Microbiol. 2014;
22. Santos P, Lopez-vallejo F, Ramírez D, Caballero J, Espinosa M, Hernández-pando R, et al. Identification of Mycobacterium tuberculosis CtpF as a target for designing new antituberculous compounds. Bioorg Med Chem [Internet]. 2019;115256. Available from: https://doi.org/10.1016/j.bmc.2019.115256
23. Kumar N, Khandelwal N, Kumar R, Chander Y, Rawat KD, Chaubey KK, et al. Inhibitor of sarco/endoplasmic reticulum calcium-ATPase impairs multiple steps of paramyxovirus replication. Front Microbiol. 2019;
24. Maya-Hoyos M, Rosales C, Novoa-Aponte L, Castillo E, Soto CY. The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon. 2019;
25. Zumla A, Raviglione M, Hafner R, Von Reyn CF. Tuberculosis. New England Journal of Medicine. 2013.
26. Delogu G, Sali M, Fadda G. The biology of mycobacterium tuberculosis infection. Mediterranean Journal of Hematology and Infectious Diseases. 2013.
27. Palomino JC, Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics. 2014.
28. Müller B, Borrell S, Rose G, Gagneux S. The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends in Genetics. 2013.
29. Lange C, Dheda K, Chesov D, Mandalakas AM, Udwadia Z, Horsburgh CR. Management of drug- resistant tuberculosis. The Lancet. 2019.
30. Tamsil TA, Nawas A, Sutoyo DK. Pengobatan Multidrugs Resistant Tuberculosis ( MDR-TB ) dengan Paduan Jangka Pendek Multidrugs Resistant Tuberculosis ( MDR-TB ) Treatment with Short Term Regimen. J Respirasi Indones. 2014;
31. WHO. WHO treatment guidelines for drug-resistant tuberculosis : 2016 update. WHO. 2016;
32. Chiang C-Y, Deun A, Enarson D. A poor drug- resistant tuberculosis programme is worse than no programme: Time for a change. Int J Tuberc Lung Dis. 2013 Apr 9;17.
33. Reichman LB, Lardizabal A. Drug-resistant tuberculosis: How are we doing? International Journal of Tuberculosis and Lung Disease. 2013.
34. Kementerian Kesehatan Republik Indonesia. Pedoman Nasional Pengendalian Tuberkulosis- Keputusan Menteri Kesehatan Republik Indonesia Nomor 364. J ICT. 2011; (Pengendalian Tuberkulosis): 110.
35. Jena L, Waghmare P, Kashikar S, Kumar S, Harinath BC. Computational approach to understanding the mechanism of action of isoniazid, an anti-TB drug. Int J Mycobacteriology. 2014;
36. Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infection, Genetics and Evolution. 2016.
37. Vilchèze C, Jacobs JR. WR. Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities. Microbiol Spectr. 2014;
38. Goldstein BP. Resistance to rifampicin: A review. Journal of Antibiotics. 2014.
39. Siu GKH, Zhang Y, Lau TCK, Lau RWT, Ho PL, Yew WW, et al. Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2011;
40. Jenkin G. Pyrazinamide. In: Kucers the Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, Seventh Edition. 2017.
41. Njire M, Tan Y, Mugweru J, Wang C, Guo J, Yew WW, et al. Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Advances in Medical Sciences. 2016.
42. Korman TM. Ethambutol. In: Kucers the Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, Seventh Edition. 2017.
43. Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR, et al. Four-month Moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med. 2014;
44. Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β- D-Arabinose biosynthetic and utilization pathway genes. Nat Genet. 2013;
45. Johnson PDR. Streptomycin. In: Kucers the Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, Seventh Edition. 2017.
46. Spies FS, Ribeiro AW, Ramos DF, Ribeiro MO, Martin A, Palomino JC, et al. Streptomycin resistance and lineage-specific polymorphisms in Mycobacterium tuberculosis gidB gene. J Clin Microbiol. 2011;
47. Zhang Y, Shi W, Zhang W, Mitchison D. Mechanisms of Pyrazinamide Action and Resistance. Microbiol Spectr. 2014;
48. Fischbach MA. Combination therapies for combating antimicrobial resistance. Current Opinion in Microbiology. 2011.
49. Chourasia M, Sastry GN. The Nucleotide, Inhibitor, and Cation Binding Sites of P-type II ATPases. Chem Biol Drug Des. 2012;
50. Faxén K, Andersen JL, Gourdon P, Fedosova N, Morth JP, Nissen P, et al. Characterization of a Listeria monocytogenes Ca2+ pump: A SERCA- type ATPase with only one Ca2+-binding site. J Biol Chem. 2011;
51. Gupta HK, Shrivastava S, Sharma R. A. novel calcium uptake transporter of uncharacterized P- type ATPase family supplies calcium for cell surface integrity in Mycobacterium smegmatis. MBio. 2017;
52. Soldati T, Neyrolles O. Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)! Traffic. 2012.
53. Botella H, Peyron P, Levillain F, Poincloux R, Poquet Y, Brandli I, et al. Mycobacterial P 1-Type ATPases mediate resistance to Zinc poisoning in human macrophages. Cell Host Microbe. 2011;
54. Argüello JM, González-Guerrero M, Raimunda D. Bacterial transition metal P 1B-ATPases: Transport mechanism and roles in virulence. Biochemistry. 2011.
55. Patel S, Lewis B, Long J, Nambi S, Sassetti C, Stemmler T, et al. Fine Tuning of Substrate Affinity Leads to Alternative Roles of Mycobacterium tuberculosis Fe 2+ -ATPases. J Biol Chem. 2016 Mar 28;291:jbc.M116.718239.
56. Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, et al. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nature Reviews Molecular Cell Biology. 2011.
57. Palmgren MG, Nissen P. P-Type ATPases. Annu Rev Biophys. 2011;
58. Bublitz M, Morth JP, Nissen P. P-type ATPases at a glance. Journal of Cell Science. 2011.
59. Smith AT, Smith KP, Rosenzweig AC. Diversity of the metal-transporting P1B-type ATPases. J Biol Inorg Chem. 2014;
60. Novoa-Aponte L, León-Torres A, Patiño-Ruiz M, Cuesta-Bernal J, Salazar LM, Landsman D, et al. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. BMC Struct Biol. 2012;
61. Pulido PA, Novoa-Aponte L, Villamil N, Soto CY. The DosR Dormancy Regulator of Mycobacterium tuberculosis Stimulates the Na+/K+ and Ca2+ ATPase Activities in Plasma Membrane Vesicles of Mycobacteria. Curr Microbiol. 2014;
62. Campbell AK. Intracellular Calcium. Intracellular Calcium. 2014.
63. Domínguez DC. Calcium Signaling in Prokaryotes. In: Calcium and Signal Transduction. 2018.
64. Novoa-Aponte L, Soto Ospina CY. Mycobacterium tuberculosis p-type atpases: Possible targets for drug or vaccine development. BioMed Research International. 2014.
65. Padilla-Benavides T, Long J, Raimunda D, Sassetti C, Argüello J. A Novel P-1B-type Mn2+- transporting ATPase Is Required for Secreted Protein Metallation in Mycobacteria. J Biol Chem. 2013 Mar 12;288.
66. Voskuil MI, Bartek IL, Visconti K, Schoolnik GK. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol. 2011;
67. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling. 2012.
68. Paiva CN, Bozza MT. Are reactive oxygen species always detrimental to pathogens? Antioxidants and Redox Signaling. 2014.
69. Shastri MD, Shukla SD, Chong WC, Dua K, Peterson GM, Patel RP, et al. Role of oxidative stress in the pathology and management of human tuberculosis. Oxid Med Cell Longev. 2018;2018.
70. Podinovskaia M, Lee W, Caldwell S, Russell DG. Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function. Cell Microbiol. 2013;
71. Goyal N, Kashyap B, Singh NP, Kaur IR. Neopterin and oxidative stress markers in the diagnosis of extrapulmonary tuberculosis. Biomarkers. 2017;
72. Shastri MD, Shukla SD, Chong WC, Dua K, Peterson GM, Patel RP, et al. Role of oxidative stress in the pathology and management of human tuberculosis. Oxidative Medicine and Cellular Longevity. 2018.
73. Idh J, Andersson B, Lerm M, Raffetseder J, Eklund D, Woksepp H, et al. Reduced susceptibility of clinical strains of Mycobacterium tuberculosis to reactive nitrogen species promotes survival in activated macrophages. PLoS One. 2017;
74. Lamichhane G. Mycobacterium tuberculosis response to stress from reactive oxygen and nitrogen species. Front Microbiol. 2011;
75. Tan MP, Sequeira P, Lin WW, Phong WY, Cliff P, Ng SH, et al. Nitrate respiration protects hypoxic Mycobacterium tuberculosisagainst acid- and reactive nitrogen species stresses. PLoS One. 2011;
76. Jamaati H, Mortaz E, Pajouhi Z, Folkerts G, Movassaghi M, Moloudizargari M, et al. Nitric oxide in the pathogenesis and treatment of tuberculosis. Frontiers in Microbiology. 2017.
77. Elks PM, Brizee S, van der Vaart M, Walmsley SR, van Eeden FJ, Renshaw SA, et al. Hypoxia Inducible Factor Signaling Modulates Susceptibility to Mycobacterial Infection via a Nitric Oxide Dependent Mechanism. PLoS Pathog. 2013;
78. Mishra BB, Rathinam VAK, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA, et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome- dependent processing of IL-1β. Nat Immunol. 2013;
79. Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, Voskuil MI. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol. 2011;
80. Chen T, He L, Deng W, Xie J. The Mycobacterium DosR regulon structure and diversity revealed by comparative genomic analysis. J Cell Biochem. 2013;
81. Cossu A, Sechi LA, Bandino E, Zanetti S, Rosu V. Expression profiling of Mycobacterium tuberculosis H37Rv and Mycobacterium smegmatis in acid-nitrosative multi-stress displays defined regulatory networks. Microb Pathog. 2013;
82. Veyrier FJ, Cellier MF. Metal economy in host- microbe interactions. Front Cell Infect Microbiol. 2014;
83. Anderson DM, Makarewich CA, Anderson KM, Shelton JM, Bezprozvannaya S, Bassel-Duby R, et al. Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. Sci Signal. 2016;
84. Di Marino D, D’Annessa I, Coletta A, Via A, Tramontano A. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: A computational study. Proteins Struct Funct Bioinforma. 2015;
85. Varga J, Frisvad JC, Samson RA. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud Mycol. 2011;
86. Cui R, Wang Y, Wang L, Li G, Lan K, Altmeyer R, et al. Cyclopiazonic acid, an inhibitor of calcium-dependent ATPases with antiviral activity against human respiratory syncytial virus. Antiviral Res. 2016;
87. Sievers F, Higgins DG. Clustal Omega. Curr Protoc Bioinforma. 2014;
88. Santos Ruiz P, López-Vallejo F, Ramirez D, Mata-Espinosa D, Hernández-Pando R, Soto C. Identification of Mycobacterium tuberculosis CtpF as a target for designing new antituberculous compounds. Bioorg Med Chem. 2019 Dec 9;