Penerapan Teknologi Mutakhir Intranasal Low Intensity LASER Therapy (ILILT) 650 nm untuk Mereduksi Viskositas Darah dan Mencegah Aktivasi NAD(P)H Oxidase (Nox) Sebagai Tatalaksana Efektif Ameliorasi Homeostasis pada Penderita Hipertensi

Main Article Content

Annisa Dewi Nugrahani
Muhammad Mulki Abdul Azis
Dinar Fauziah Agustin

Abstract

Latar Belakang: Hipertensi adalah keadaan ketika tekanan darah pada arteri secara sistemik dan kronis mengalami peningkatan melampaui ambang batas normal akibat adanya peran penting dari RAAS (Renin-Angiotensin Aldosteron System) yang memicu terjadinya vasokonstriksi dan peningkatan viskositas darah sehingga dapat menginduksi terjadinya hipertensi. Hipertensi menjadi perhatian khusus karena prevalensinya yang tinggi khususnya di Indonesia dan pada umumnya diderita oleh orang dewasa usia produktif. Walaupun demikian, sistem kontrol hipertensi di Indonesia masih dapat dikatakan belum mencukupi walaupun sudah banyak jumlah obat-obatan yang tersedia. Apabila hipertensi tidak ditangani dengan baik, homeostasis penderita menjadi terganggu dan cenderung menimbulkan berbagai komplikasi sehingga dapat mereduksi produktivitas negara.


Tujuan: Tujuan dari tulisan ini adalah untuk mengetahui potensi Teknologi Intranasal Low Intensity LASER Therapy (ILILT) 650 nm sebagai inovasi mutakhir ameliorasi homeostasis pada penderita hipertensi.


Metode: Dalam membuat tulisan ini, penulis membuat analisis dan sintesis dari berbagai referensi yang relevan dengan topik melalui berbagai kata kunci dan dengan jangka waktu tidak lebih dari 10 tahun.


Hasil: Teknologi Intranasal Low Intensity LASER Therapy (ILILT) 650 nm pada dosis dan penggunaan yang tepat dapat menangani hipertensi dengan cara mereduksi viskositas darah sekaligus mencegah aktivasi NAD(P)H Oxidase (Nox) sehingga dapat mencegah terjadinya serangkaian tahap yang berkontribusi dalam patomekanisme hipertensi dengan efek samping yang minimum sehingga dapat memperbaiki kondisi homeostasis dalam menangani hipertensi.


Kesimpulan: Teknologi Intranasal Low Intensity LASER Therapy (ILILT) 650 nm memiliki prospek yang baik sebagai tatalaksana mutakhir pada penderita hipertensi.


 


Kata Kunci: Angiotensin II, Hipertensi, NAD(P)H Oxidase, Intranasal Low Intensity LASER Therapy, Viskositas

Article Details

How to Cite
Nugrahani, A., Azis, M., & Agustin, D. (2020). Penerapan Teknologi Mutakhir Intranasal Low Intensity LASER Therapy (ILILT) 650 nm untuk Mereduksi Viskositas Darah dan Mencegah Aktivasi NAD(P)H Oxidase (Nox) Sebagai Tatalaksana Efektif Ameliorasi Homeostasis pada Penderita Hipertensi. JIMKI: Jurnal Ilmiah Mahasiswa Kedokteran Indonesia, 6(2), 125-137. Retrieved from https://bapin-ismki.e-journal.id/jimki/article/view/168
Section
Article Review

References

1. Loscalzo J. Harrison's cardiovascular medicine. 1st ed.
2. Singh M, Mensah G, Bakris G. Pathogenesis and Clinical Physiology of Hypertension. Cardiology Clinics. 2010;28(4):545-559.
3. Infodatin 2013
4. Giles T, Materson B, Cohn J, Kostis J. Definition and Classification of Hypertension: An Update. The Journal of Clinical Hypertension. 2009;11(11):611-614.
5. Nasal Light Therapy. (2014) (13th ed.). Miami.
6. Hall J, Guyton A. Guyton and Hall textbook of medical physiology. 1st ed. Philadelphia (PA): Elsevier; 2016.
7. Lim T. Edible medicinal and non- medicinal plants. 1st ed. Dordrecht: Springer; 2012.
8. Lohmeier T. Angiotensin II Infusion Model of Hypertension: Is There an Important Sympathetic Component?. Hypertension. 2012;59(3):539- 541.
9. Pereira M, Souza L, Becari C, et al. Angiotensin II-Independent Angiotensin-(1-7) Formation in Rat Hippocampus: Involvement of Thimet Oligopeptidase. Hypertension. 2013;62(5):879- 885.
10. Vaidya A, Brown J, Williams J. The renin–angiotensin– aldosterone system and calcium- regulatory hormones. Journal of Human Hypertension. 2015;29(9):515-521.
11. Bissonnette B, Anderson B. Pediatric Anesthesia: Basic Principles, State of the Art, Future. 1st ed. People's Medical Publishing House USA Ltd (PMPH); 2011.
12. Maron B, Leopold J. The role of the renin-angiotensin- aldosterone system in the pathobiology of pulmonary arterial hypertension (2013 Grover Conference series). Pulmonary Circulation. 2014;4(2):200-210.
13. Lu H, Cassis L, Kooi C, Daugherty A. Structure and functions of angiotensinogen. Hypertension Research. 2016;39(7):492-500.
14. Khirzin M, Sukarno S, Yuliana N, et al. Aktivitas Inhibitor Enzim Pengubah Angiotensin (ACE) dan Antioksidan Peptida Kolagen dari Teripang Gama (Stichopus variegatus). Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan. 2015;10(1):27.
15. Huang F, Guo J, Zou Z, et al. Angiotensin II plasma levels are linked to disease severity and predict fatal outcomes in H7N9- infected patients. Nature Communications. 2014;5.
16. Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Molecular Medicine. 2010;2(7):247-257.
17. Lai E, Solis G, Luo Z, et al. p47phox Is Required for Afferent Arteriolar Contractile Responses to Angiotensin II and Perfusion Pressure in Mice. Hypertension. 2011;59(2):415-420.
18. Nguyen Dinh Cat A, Montezano A, Burger D, et al. Angiotensin II, NADPH Oxidase, and Redox Signaling in the Vasculature. Antioxidants & Redox Signaling. 2013;19(10):1110-1120.
19. Premer C, Lamondin C, Mitzey A, et al. Immunohistochemical Localization of AT 1a , AT 1b ,and AT 2 Angiotensin II Receptor Subtypes in the Rat Adrenal, Pituitary, and Brain with a Perspective Commentary. 2017.
20. El-Benna J, Dang P, Gougerot- Pocidalo M, Marie J, Braut- Boucher F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Experimental and Molecular Medicine. 2009;41(4):217.
21. Lu J, Mitra S, Wang X, Khaidakov M, and Mehta JL. Oxi- dative stress and lectin-like ox- LDLreceptor LOX-1 in ath- erogenesis and tumorigenesis. Antioxid Redox Signal 15: 2301– 2333, 2011.
22. BACK M. ESC TEXTBOOK OF VASCULAR BIOLOGY. 1st ed. [S.l.]: Oxford UNIV PRESS; 2017. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2012;1817(4):610-619.
29. Taverne Y, de Wijs-Meijler D, te Lintel Hekkert M, et al. Normalization of Hemoglobin- based Oxygen Carrier-201 Induced Vasoconstriction: Roles of nitric oxide scavenging and endothelin. Journal of Applied Physiology. 2017;:jap.00677.2016.
30. Citterio L, Simonini M, Zagato L et al. Genes Involved in Vasoconstriction and Vasodilation System Affect Salt- Sensitive Hypertension. 2017.
31. Charkoudian N. Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. Journal of Applied Physiology. 2010;109(4):1221-1228.
32. Chugh G, Lokhandwala M, 23. Brandes RP and Schroer K.Asghar M. Altered Functioning of Differential vascular functions of Nox family NAD(P)H oxidases. Curr Opin Lipidol 19: 513– 518, 2008.
24. Jacob C, Jamier V, and Ba LA. Redox active secondary me- tabolites. Curr Opin Chem Biol 15: 149–155, 2011.
25. Sharma P, Jha A, Dubey R, et al. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. 2017.
26. Hsieh H, Liu C, Huang B, et al. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. Journal of Biomedical Science. 2014;21(1):3.
27. Poljsak B. Strategies for Reducing or Preventing the Generation of Oxidative Stress. 2017.
28. Sarti P, Forte E, Mastronicola D, et al. Cytochrome c oxidase and nitric oxide in action: Molecular mechanisms and pathophysiological implications.Both Renal Dopamine D1 and Angiotensin II Type 1 Receptors Causes Hypertension in Old Rats. Hypertension. 2012;59(5):1029-1036.
33. 10. Legrand M, Payen D. Understanding urine output in critically ill patients. Annals of Intensive Care. 2011;1(1):13.
34. Palmer L, Schnermann J. Integrated Control of Na Transport along the Nephron. Clinical Journal of the American Society of Nephrology. 2014;10(4):676-687.
35. Saldanha C, Loureiro J, Moreira C, et al. Behaviour of Human Erythrocyte Aggregation in Presence of Autologous Lipoproteins. 2017.
36. Brust M, Aouane O, Thiébaud M,et al. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows. Scientific Reports. 2014;4.
37. LENZ C, REBEL A, WASCHKE K, et al. Blood viscosity modulates tissue perfusion – sometimes and somewhere. Transfusion Alternatives in Transfusion Medicine. 2008;9(4):265-272.
38. Chevalier G, Sinatra S, Oschman J, et al. Earthing (Grounding) the Human Body Reduces Blood Viscosity—a Major Factor in Cardiovascular Disease. The Journal of Alternative and Complementary Medicine. 2013;19(2):102-110.
39. Novak P. Cerebral Blood Flow, Heart Rate, and Blood Pressure Patterns during the Tilt Test in Common Orthostatic Syndromes. 2017.
40. Medical Lasers [Internet]. Fda.gov. 2017 [cited 1 April 2017]. Available from: https://www.fda.gov/Radiation- EmittingProducts/RadiationEmitt ingProductsandProcedures/Surg icalandTherapeutic/ucm115910. htm
41. B Cotler H. The Use of Low Level Laser Therapy (LLLT) For Musculoskeletal Pain. MOJ Orthopedics & Rheumatology. 2015;2(5).
42. Beckmann K, Meyer-Hamme G, Schröder S. Low Level Laser Therapy for the Treatment of Diabetic Foot Ulcers: A Critical Survey. 2017.
43. Chung H, Dai T, Sharma S, Huang Y, Carroll J, Hamblin M. The Nuts and Bolts of Low-level Laser (Light) Therapy. Annals of Biomedical Engineering. 2011;40(2):516-533.
44. Jimenez J, Wikramanayake T, Bergfeld W, et al. Efficacy and Safety of a Low-level Laser Device in the Treatment of Male and Female Pattern Hair Loss: A Multicenter, Randomized, Sham Device-controlled, Double-blind Study. American Journal of Clinical Dermatology. 2014;15(2):115-127.
45. Carroll J. Photomedicine and LLLT Literature Watch. Photomedicine and Laser Surgery. 2011;29(8):589-589.
46. Smith K. MOLECULAR TARGETS FOR LOW LEVEL LIGHT THERAPY. LASER THERAPY. 2010;19(3):135-142.
47. Hamblin M. Photobiomodulation or low-level laser therapy. Journal of Biophotonics. 2016;9(11-12):1122-1124.
48. Van Hove C, Van der Donckt C, Herman A, et al. Vasodilator efficacy of nitric oxide depends on mechanisms of intracellular calcium mobilization in mouse aortic smooth muscle cells. British Journal of Pharmacology. 2009;158(3):920-930.
49. T. Halpin S. The Red Blood Cell and Nitric Oxide: Derived, Stimulated, or Both?. The Open Nitric Oxide Journal. 2011;3(1):8-15.
50. Vilhjálmsdóttir J, Johansson A, Brzezinski P. Structural Changes and Proton Transfer in Cytochrome c Oxidase. Scientific Reports. 2015;5:12047.
51. Hamblin M. The role of nitric oxide in low level light therapy. Mechanisms for Low-Light Therapy III. 2008;.
52. Thunemann M. Correlative intravital imaging of cGMP signals and vasodilation in mice. Frontiers in Physiology. 2014;5.
53. Chen. Phosphorylation of vasodilator stimulated phosphoprotein is correlated with cell cycle progression in HeLa cells. Molecular Medicine Reports. 2010;3(4
54. Liu T, Cheng L, Su W, Zhang Y, Shi Y, Liu A et al. Randomized, Double-Blind, and Placebo- Controlled Clinic Report of Intranasal Low-Intensity Laser Therapy on Vascular Diseases. 2017.
55. Fernandes H, Cesar C, Barjas- Castro M. Electrical properties of the red blood cell membrane and immunohematological investigation. Revista Brasileira de Hematologia e Hemoterapia. 2011;33(4):297-301.
56. Li, W., Sullivan, M.,et al. (2014). Intracerebroventricular Infusion of the (Pro)renin Receptor Antagonist PRO20 Attenuates Deoxycorticosterone Acetate- Salt-InducedHypertension. Hypertension, 652), 352-361.
57. Lim, T. (2010). Lowering high blood pressure naturally through intranasal light therapy. Toronto: Medicights Research Inc.
58. Liu, T., Cheng, L., et al. (2012). Randomized, Double-Blind, and Placebo-Controlled Clinic Report of Intranasal Low-Intensity Laser Therapy on Vascular Diseases. International Journal Of Photoenergy, 2012, 1-5.
59. Lim, Lew. (2013). The Potential of Intranasal Light Therapy For Brain Stimulation. Toronto: Medicights Research Inc