DNA HEAT SHOCK PROTEIN 65 (HSP65) VACCINE WITH NANOPARTICLE PLGA ENCRYPTED KLK AS A PREVENTIVE AND CURATIVE TUBERCULOSIS THERAPY INNOVATION

Main Article Content

Jaya Firmansyah
Hana Nafisah
Nabila Rayhan Yasmin

Abstract

Background: Tuberculosis has high mortality rate. BCG vaccine is used for preventing tuberculosis infection. However, the protective effect of the BCG vaccine varies from 0-80% and decreases significantly after 10-15 years. So, new vaccine innovations that are more protective are needed. The purpose is to determine the effectiveness of using the hsp65 DNA vaccine with KLK adjuvant encapsulated PLGA nanoparticles as a preventive and curative therapeutic innovation for tuberculosis.


Methods: Reviewed papers were obtained using search engines such as Google Scholar, Proquest, Sciencedirect, and PubMed with publication range from 2010 to 2020 and paper were selected theirs validity and reliability. Then  literature review and article writing are conducted.


Discussion: The hsp65 DNA vaccine can trigger cytokine production, such as IFN-γ, IL-2, higher CD4 +, CD8 +, T cell activity than the BCG vaccine. There was significant decrease in the level of MTB in mice injected with the hsp65 vaccine. The combination of the Hsp65 + KLK vaccine showed the least lung damage and area of inflammation and the highest Th1 response and IL-10 production among the other vaccines. To increase the efficiency of the DNA hsp65 + KLK vaccine, a dose reduction was made to a single dose using biodegradable PLGA nanoparticles as an antigen-carrying system.


Conclusion: The combination of DNA hsp65 and KLK vaccines can trigger specific immune responses against MTB and with PLGA encapsulation can increase its efficiency, so it has high potential as a preventive and curative therapy for tuberculosis.

Article Details

How to Cite
Firmansyah, J., Nafisah, H., & Yasmin, N. (2021). DNA HEAT SHOCK PROTEIN 65 (HSP65) VACCINE WITH NANOPARTICLE PLGA ENCRYPTED KLK AS A PREVENTIVE AND CURATIVE TUBERCULOSIS THERAPY INNOVATION. JIMKI: Jurnal Ilmiah Mahasiswa Kedokteran Indonesia, 9(2), 51-61. https://doi.org/10.53366/jimki.v9i2.364
Section
Article Review

References

1. Kemenkes RI. Infodatin Tuberculosis Pusat Data dan Informasi Kementerian Kesehatan Republik Indonesia. 2018

2. WHO. Bending The Curve Ending TB. World Health Organization Regional Office for South-east Asia. 2016

3. Prasad R, Srivastava DK. Multi drug and extensively drug-resistant TB (M/XDR-TB) management: Current issues. Clin Epidemiol Glob Health. 2013;1(3), 124–8
4. WHO. Global Tuberculosis Report 2015. Geneva. 2015

5. Surbakti, C. A., Novitawati, S., & Billy, M. Inovasi Vaksin DNA Heat Shock Protein 65 (hsp65) dengan Ubiquitin Terenkapsulasi Nanopartikel PLGA sebagai Terapi Preventif dan Kuratif Tuberkulosis. Cermin Dunia Kedokteran, 2016; 43(3), 230-34.
6. Riani, R. E. S., & Machmud, P. B. Kasus Kontrol Hubungan Imunisasi BCG dengan kejadian TB Paru pada anak tahun 2015-2016. Sari Pediatri, 2018;19(6), 321-27.
7. Barreto ML, Pereira SM, Pilger D, Cruz AA, Cunha SS, Sant’Anna et al. Evidence of an effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: second report of the BCG-REVAC cluster-randomised trial. Vaccine 2011; 29, 4875-7.
8. Santos S.A et al. A subunit vaccine based on biodegradable microspheres carrying rHsp65 protein and KLK protects BALB/c mice against tuberculosis infection. Human Vaccines. 2010; 6 (12), 1047-53.
9. Zufferey C, Germano S, Dutta B, Ritz N, Curtis N. The contribution of non-conventional T cells and NK cells in the mycobacterial-specific IFNγ response in bacille calmette-guerin (BCG)- immunized infants. PLOSOne. 2013; 8(10).
10. Changhong S, Hai Z, Limei W, Jiaze A, Li X, Tingfen Z, et al. Therapeutic efficacy of a tuberculosis DNA vaccine encoding heat shock protein 65 of Mycobacterium tuberculosis and the human interleukin 2 fusion gene. Tuberculosis. 2009; 89(1), 54–61.
11. Hirota K, Hasegawa T, Nakajima T, Inagawa H, Kohchi C, Soma G-I, et al. Delivery of rifampicin–PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. J Controlled Release. 2010; 142(3), 339–46.
12. Kalluru R, Fenaroli F, Westmoreland D, Ulanova L, Maleki A, Roos N, et al. Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes. J Cell Sci. 2013; 126(14), 3043–54.
13. Wowk, P. F., Franco, L. H., Fonseca, D. M. D., Paula, M. O., Vianna, É. D. S. O., Wendling, A. P., & Vinhas, S. A. Mycobacterial Hsp65 antigen upregulates the cellular immune response of healthy individuals compared with tuberculosis patients. Human vaccines & immunotherapeutics,2017; 13(5), 1040-50.
14. Stefanini AC, da Cunha BR, Henrique T, Tajara EH. Involvement of Kallikrein-Related Peptidases in Normal and Pathologic Processes. Dis Markers. 2015:946572. doi:10.1155/2015/946572
15. Chikh G, Luu R, Patel S, Davis HL, Weeratna RD. Effects of KLK Peptide on Adjuvanticity of Different ODN Sequences. Vaccines (Basel). 2016; 4(2), 14. doi:10.3390/vaccines4020014
16. H. Hillaireau, P. Couvreur. Nanocarriers' entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 2009; 66, 2873–2896
17. A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf. B Biointerfaces. 2010; 75, 1–18.
18. Danhier et al. PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release. 2012; 161, 505–522
19. J.K. Vasir, V. Labhasetwar, Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv. Drug Deliv. Rev. 2010; 59, 718–728.
20. S. Acharya, S.K. Sahoo, PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect, Adv. Drug Deliv. Rev. 2011; 63, 170–183
21. C. Clawson, C.T. Huang, D. Futalan, D.M. Seible, R. Saenz, M. Larsson, W. Ma, B. Minev, F. Zhang, M. Ozkan, C. Ozkan, S. Esener, D. Messmer, Delivery of a peptide via poly(D,L-lactic-co-glycolic) acid nanoparticles enhances its dendritic cellstimulatory capacity. Nanomedicine. 2010; 6, 651–661.
22. J. Tian, J. Yu, Poly(lactic-co-glycolic acid) nanoparticles as candidate DNA vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus) against lymphocystis disease virus. Fish Shellfish Immunol. 2011; 30, 109–117.
23. B. Slutter, S. Bal, C. Keijzer, R. Mallants, N. Hagenaars, I. Que, E. Kaijzel, W. van Eden, P. Augustijns, C. Lowik, J. Bouwstra, F. Broere, W. Jiskoot, Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine. 2010; 28, 6282–6291
24. C. Clawson, C.T. Huang, D. Futalan, D.M. Seible, R. Saenz, M. Larsson, W. Ma, B. Minev, F. Zhang, M. Ozkan, C. Ozkan, S. Esener, D. Messmer, Delivery of a peptide via poly(D,L-lactic-co-glycolic) acid nanoparticles enhances its dendritic cellstimulatory capacity. Nanomedicine. 2010; 6, 651–661.
25. R. Brunner, E. Jensen-Jarolim, I. Pali-Scholl, The ABC of clinical and experimental adjuvants—a brief overview. Immunol. Lett. 2010; 128, 29–35.
26. R. Arens, S.P. Schoenberger, Plasticity in programming of effector and memory CD8 T-cell formation. Immunol. Rev. 2010; 235, 190–205.