HUMAN EMBRYONIC STEM CELL DERIVATIVE SUBRETINAL PIGMENT EPITHELIAL TRANSPLANTATION AS A TREATMENT FOR DRY-TYPE MACULAR
Main Article Content
Abstract
Age-related Macular Degeneration (AMD), is the fourth disease which causes blindness in the world, will potentially increase in 2020. Therefore, alternative treatment is needed to be developed, such as Human Embryonic Stem Cell-derived Retinal Pigment Epithelium (hESC-RPE) transplantation in a subretinal layer. The purpose of this literature review is to identify AMD pathogenesis, especially dry type, to know the impact of hESC-RPE transplantation towards acuity of vision, and to understand its therapeutic effect, safety, also tolerability based on the literature cited. Articles were collected by google search engine through Pubmed, Sciencedirect, Proquest, and Springer link. Inclusion criteria are literature that was published between 2010-2020, clinical trial study, systematic review, and meta-analysis. the topic of these sources is focused on regenerative therapy in AMD patients. Whereas exclusion criteria are literature that published under 2010. According to our research, hESC-RPE transplantation in a subretinal layer can increase the acuity of vision in dry-type AMD patients by improving RPE pigmentation, which protects its photoreceptor cells. Safety and tolerability are proof that there are no abnormalities in proliferation and immunity. In conclusion, these findings are beneficial in the improvement quality life of AMD patients. Therefore, in the future, subretinal hESC-RPE can be effective in the alternative treatment of dry-typed AMD patients.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
2. Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392(10153):1147-1159. doi:10.1016/S0140-6736(18)31550-2
3. Bourne RRA, Stevens GA, White RA, et al. Causes of vision loss worldwide, 1990–2010: a systematic analysis. lancet Glob Heal. 2013;1(6):e339-e349.
4. Mathenge W. Age-related macular degeneration. Community eye Heal. 2014;27(87):49-50. https://pubmed.ncbi.nlm.nih.gov/25918464.
5. Chakravarthy U, Evans J, Rosenfeld PJ. Age related macular degeneration. BMJ. 2010;340(7745):526-530. doi:10.1136/bmj.c981
6. Gavrilov S, Papaioannou VE, Landry DW. Alternative Sources of Human Embryonic Stem Cells. In: ; 2011.
7. Jonas JB, Cheung CMG, Panda-Jonas S. Updates on the Epidemiology of Age-Related Macular Degeneration. Asia-Pacific J Ophthalmol. 2017;6(6). https://journals.lww.com/apjoo/Fulltext/2017/11000/Updates_on_the_Epidemiology_of_Age_Related_Macular.5.aspx.
8. Rudnicka AR, Jarrar Z, Wormald R, Cook DG, Fletcher A, Owen CG. Age and Gender Variations in Age-related Macular Degeneration Prevalence in Populations of European Ancestry: A Meta-analysis. Ophthalmology. 2012;119(3):571-580. doi:10.1016/j.ophtha.2011.09.027
9. Kawasaki R, Yasuda M, Song SJ, et al. The Prevalence of Age-Related Macular Degeneration in Asians: A Systematic Review and Meta-Analysis. Ophthalmology. 2010;117(5):921-927. doi:10.1016/j.ophtha.2009.10.007
10. Wong W, su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob Heal. 2014;2:e106–e116. doi:10.1016/S2214-109X(13)70145-1
11. Ferris III FL, Wilkinson CP, Bird A, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120(4):844-851.
12. Ambati J, Fowler BJ. Mechanisms of age-related macular degeneration. Neuron. 2012;75(1):26-39. doi:10.1016/j.neuron.2012.06.018
13. Anderson OA, Finkelstein A, Shima DT. A2E induces IL-1ss production in retinal pigment epithelial cells via the NLRP3 inflammasome. PLoS One. 2013;8(6):e67263. doi:10.1371/journal.pone.0067263
14. Wang J, Feng Y, Han P, et al. Photosensitization of A2E triggers telomere dysfunction and accelerates retinal pigment epithelium senescence. Cell Death Dis. 2018;9:178. doi:10.1038/s41419-017-0200-7
15. Limoli PG, Vingolo EM, Limoli C, Scalinci SZ, Nebbioso M. Regenerative Therapy by Suprachoroidal Cell Autograft in Dry Age-related Macular Degeneration: Preliminary In Vivo Report. J Vis Exp. 2018;(132). doi:10.3791/56469
16. Apolo Romero EX, Gálvez Salazar PF, Estrada Chandi JA, et al. Gallbladder duplication and cholecystitis. J Surg case reports. 2018;2018(7):rjy158. doi:10.1093/jscr/rjy158
17. da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328-337. doi:10.1038/nbt.4114
18. Kashani AH, Lebkowski JS, Rahhal FM, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10(435):eaao4097. doi:10.1126/scitranslmed.aao4097
19. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509-516. doi:https://doi.org/10.1016/S0140-6736(14)61376-3
20. Song WK, Park K-M, Kim H-J, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem cell reports. 2015;4(5):860-872. doi:10.1016/j.stemcr.2015.04.005
21. Parmar VM, Parmar T, Arai E, Perusek L, Maeda A. A2E-associated cell death and inflammation in retinal pigmented epithelial cells from human induced pluripotent stem cells. Stem Cell Res. 2018;27:95-104. doi:https://doi.org/10.1016/j.scr.2018.01.014
22. Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med. 2010;10(9):802-823. doi:10.2174/156652410793937813
23. Anderson OA, Finkelstein A, Shima DT. A2E Induces IL-1ß Production in Retinal Pigment Epithelial Cells via the NLRP3 Inflammasome. PLoS One. 2013;8(6):e67263. doi:10.1371/journal.pone.0067263
24. Barret KE. Vision. In: Ganong’s Review of Medical Physiology Edition 26. 26th ed. New York: Mc Graw Hills Education; 2019:193.
25. Zhu D, Deng X, Spee C, et al. Polarized secretion of PEDF from human embryonic stem cell-derived RPE promotes retinal progenitor cell survival. Investig Ophthalmol Vis Sci. 2011;52(3):1573-1585. doi:10.1167/iovs.10-6413
26. Plaza Reyes A, Petrus-Reurer S, Antonsson L, et al. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model. Stem Cell Reports. 2016;6(1):9-17. doi:10.1016/j.stemcr.2015.11.008
27. Carido M, Zhu Y, Postel K, et al. Characterization of a mouse model with complete RPE loss and its use for RPE cell transplantation. Invest Ophthalmol Vis Sci. 2014;55(8):5431-5444. doi:10.1167/iovs.14-14325
28. Li Y, Tsai YT, Hsu CW, et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med. 2012;18(9):1312-1319. doi:10.2119/molmed.2012.00242
29. Szatmári-Tóth M, Ilmarinen T, Mikhailova A, et al. Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium-Role in Dead Cell Clearance and Inflammation. Int J Mol Sci. 2019;20(4):926. doi:10.3390/ijms20040926
30. Schwartz SD, Hubschman J-P, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet (London, England). 2012;379(9817):713-720. doi:10.1016/S0140-6736(12)60028-2
31. Koss MJ, Falabella P, Stefanini FR, et al. Subretinal implantation of a monolayer of human embryonic stem cell-derived retinal pigment epithelium: a feasibility and safety study in Yucatán minipigs. Graefe’s Arch Clin Exp Ophthalmol. 2016;254(8):1553-1565. doi:10.1007/s00417-016-3386-y
32. Subrizi A, Hiidenmaa H, Ilmarinen T, et al. Generation of hESC-derived retinal pigment epithelium on biopolymer coated polyimide membranes. Biomaterials. 2012;33(32):8047-8054. doi:10.1016/j.biomaterials.2012.07.033
33. Diniz B, Thomas P, Thomas B, et al. Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a Monolayer. Invest Ophthalmol Vis Sci. 2013;54(7):5087-5096. doi:10.1167/iovs.12-11239
34. Cereda MG, Parolini B, Bellesini E, Pertile G. Surgery for CNV and autologous choroidal RPE patch transplantation: exposing the submacular space. Graefe’s Arch Clin Exp Ophthalmol. 2010;248(1):37-47. doi:10.1007/s00417-009-1201-8
35. Mandai M, Watanabe A, Kurimoto Y, et al. Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration. N Engl J Med. 2017;376(11):1038-1046. doi:10.1056/NEJMoa1608368
36. van Romunde SHM, Polito A, Peroglio Deiro A, Guerriero M, Pertile G. Retinal pigment epithelium–choroid graft with a peripheral retinotomy for exudative age-related macular degeneration: long-term outcome. RETINA. 2019;39(2). https://journals.lww.com/retinajournal/Fulltext/2019/02000/RETINAL_PIGMENT_EPITHELIUM_CHOROID_GRAFT_WITH_A.9.aspx.
37. Lu B, Tai Y-C, Humayun MS. Microdevice-based cell therapy for age-related macular degeneration. Dev Ophthalmol. 2014;53:155-166. doi:10.1159/000357375
38. Thomas BB, Zhu D, Zhang L, et al. Survival and Functionality of hESC-Derived Retinal Pigment Epithelium Cells Cultured as a Monolayer on Polymer Substrates Transplanted in RCS Rats. Invest Ophthalmol Vis Sci. 2016;57(6):2877-2887. doi:10.1167/iovs.16-19238
39. Fernandes RAB, Stefanini FR, Falabella P, et al. Development of a new tissue injector for subretinal transplantation of human embryonic stem cell derived retinal pigmented epithelium. Int J Retin Vitr. 2017;3:41. doi:10.1186/s40942-017-0095-6
40. Mehat MS, Sundaram V, Ripamonti C, et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology. 2018;125(11):1765-1775. doi:10.1016/j.ophtha.2018.04.037
41. Diniz B, Thomas P, Thomas B, et al. Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a Monolayer. Invest Ophthalmol Vis Sci. 2013;54(7):5087-5096. doi:10.1167/iovs.12-11239